Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1α signaling in human epithelial ovarian cancer.
نویسندگان
چکیده
Follicle-stimulating hormone (FSH) and the FSH receptor contribute to tumor angiogenesis and are acknowledged risk factors for ovarian epithelial cancer (OEC). Accumulating evidence suggests that FSH can induce vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF1α) expression. We previously demonstrated that FSH induces reactive oxygen species (ROS) production and activates Nrf2 signaling. This study was performed to investigate whether FSH induces VEGF expression via a ROS-mediated Nrf2 signaling pathway. In the current study, OET cells were treated with FSH; dichlorofluorescein staining was used to determine ROS generation, western blotting was used to quantify Nrf2 expression and VEGF expression was measured using an ELISA. Nrf2 and HIF1α were knocked down using siRNAs to investigate the role of the Nrf2 and HIF1α signaling pathways in FSH-induced VEGF expression. The chromatin immunoprecipitation assay (ChIP) was used to determine HIF1α binding to the VEGF promoter. Finally, it was found that FSH induced ROS production and activated Nrf2 signaling; elimination of ROS or knockdown of Nrf2 blocked FSH-induced VEGF expression. Knockdown of Nrf2 impaired HIF1α signaling activation. Blockage of the FSH-ROS-Nrf2-HIF1α signaling pathway attenuated FSH-induced binding of HIF1α to the VEGF promoter. Collectively, this study indicates that ROS and aberrant expression of Nrf2 play an important role in FSH-induced angiogenesis in OEC, and provides insight into the mechanisms of FSH-induced VEGF expression. Elimination of ROS or inhibition of Nrf2 may represent potential therapeutic targets for the treatment of ovarian cancer.
منابع مشابه
In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملReactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor.
Reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. However, the direct roles of endogenous ROS production still remain to be elucidated. In this study, we found that high levels of ROS were spontaneously produced by ovarian and prostate cancer cells. This elevated ROS production was inhibited by NADPH oxidase...
متن کاملNRF2 is overexpressed in ovarian epithelial carcinoma and is regulated by gonadotrophin and sex-steroid hormones.
Aberrant nuclear factor-erythroid 2 (NRF2) expression correlates with tumor development. We investigated NRF2 expression in ovarian epithelial carcinoma (OEC), aiming to identify associations with clinicopathological factors, hormones and induced reactive oxygen species (ROS). Immunohistochemical staining for NRF2 expression was performed on 10 be...
متن کاملGremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling
Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGF...
متن کاملGenetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection.
The beta zipper (bZip) transcription factor, nuclear factor erythroid 2, like 2 (Nrf2), acting via an antioxidant/electrophile response element, regulates the expression of several antioxidant enzymes and maintains cellular redox homeostasis. Nrf2 deficiency diminishes pulmonary expression of several antioxidant enzymes, rendering them highly susceptible to various mouse models of prooxidant-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2013